A Variation of Rational L₁ Approximation*

Zhiwei Ma⁺

Department of Applied Mathematics, Beijing University of Aeronautics and Astronautics, Beijing, Peoples Republic of China

AND

YINGGUANG SHI

Computing Center, Academia Sinica, Beijing, Peoples Republic of China

Communicated by A. Pinkus

Received June 6, 1988; revised October 19, 1988

A new approximating method proposed by A. Pinkus and O. Shisha is extended to rational approximation. The existence, characterization, uniqueness, strong uniqueness, and continuity of best approximation are established. C 1990 Academic Press, Inc.

NOTATION

For $f \in C[0, 1]$, the measure $\|\cdot\|$ introduced by Pinkus and Shisha [2] is

$$|||f||| = \sup_{0 \le a \le b \le 1} \left\{ \left| \int_a^b f \, dx \right| : f(x) > 0 \text{ on } (a, b) \text{ or } f(x) < 0 \text{ on } (a, b) \right\}.$$

With this measure, Pinkus and Shisha have studied best approximation from the set of algebraic polynomials of degree $\leq n$, and have established some remarkable results. Set

$$R_m^n := \{ p/q : p \in P_n, q \in P_m, p/q \text{ is irreducible}, q > 0 \text{ on } [0, 1] \},$$

where P_n denotes the set of all real algebraic polynomials of degree $\leq n$. For $f \in C[0, 1]$, one can consider the following problem: find $r_0 \in R_m^n$ such

* Supported by the National Natural Science Foundation of China.

⁺ Present address: Dept. of Statistics, Box 2179, Yale Station, Yale University, New Haven, CT 06520.

that $|||f - r_0|| = \inf\{|||f - r|| : r \in \mathbb{R}_m^n\}$. Any such r_0 is called a best approximation to f from \mathbb{R}_m^n (with respect to $|| \cdot ||$).

In this paper we consider the basic questions of existence, characterization, uniqueness, and continuity of best approximation, and get some interesting results analogous to the well-known theorems for the Chebyshev norm $\|\cdot\|$ (throughout this paper $\|\cdot\|$ denotes $\|\cdot\|_{\ell}$).

1. EXISTENCE

Using the method in the proof of Theorem 2.5 of [2], one can obtain:

LEMMA 1.1. Assume that for $k = 1, 2, ..., f_k \in C[0, 1]$, $p_k \in P_n$, and $\{||f_k||\}$ is bounded. Then the sequence $\{||p_k||\}$ is bounded whenever $\{||f_k - p_k||\}$ is bounded.

We also need:

LEMMA 1.2. Assume that for $k = 1, 2, ..., r_k \in \mathbb{R}^n_m$, $f_k \in \mathbb{C}[0, 1]$, and $\{||f_k||\}$ is bounded. If $|||r_k|| \to +\infty$, then

$$\lim_{k \to \infty} |||f_k - r_k||| / |||r_k||| \ge \frac{1}{s+1}.$$

where $s = \max\{m, n\}$.

Proof. Assume that for k = 1, 2, ..., an open interval $I_k = (a_k, b_k)$ in [0, 1] is such that for some $e_k = 1$ or -1, fixed, $e_k r_k > 0$ on I_k and $e_k \int_{I_k} r_k dx = ||r_k||$. Let $||f_k|| \le M$ for k = 1, 2, ... Without loss of generality assume that $||r_k|| > (s+2)M$ for all k > 0. Then $e_k M - r_k$ has at most s zeros in [0, 1], for otherwise $r_k = e_k M$ on [0, 1]. Hence

$$|||e_k M - r_k|||_{[a_k, b_k]} \ge \frac{1}{s+1} \int_{I_k} |e_k M - r_k| dx.$$

Assume that an open interval $\tilde{I}_k \subset I_k$ is chosen so that for some $\bar{e}_k = 1$ or -1, fixed,

$$\bar{e}_k(e_k M - r_k) > 0 \qquad \text{on } \tilde{I}_k \tag{1.1}$$

and

$$\bar{e}_k \int_{\bar{I}_k} (e_k M - r_k) \, dx = |||e_k M - r_k |||_{[a_k, b_k]} \, . \tag{1.2}$$

One must have $\bar{e}_k = -e_k$, for otherwise,

$$\|\|r_k\|_{l} = e_k \int_{I_k} r_k \, dx \leq \int_{I_k} |e_k M - r_k| \, dx + M$$
$$\leq (s+1)\bar{e}_k \int_{\bar{I}_k} (e_k M - r_k) \, dx + M < (s+2) M$$

By virtue of (1.1) and (1.2) with $\bar{e}_k = -e_k$, we have $-e_k(f_k - r_k) \ge -M + e_k r_k = -e_k(e_k M - r_k) > 0$ on \tilde{I}_k and

$$\| f_{k} - r_{k} \| \ge -e_{k} \int_{\overline{I}_{k}} (f_{k} - r_{k}) dx$$

$$\ge -e_{k} \int_{\overline{I}_{k}} (e_{k} M - r_{k}) dx = \| e_{k} M - r_{k} \|_{[a_{k}, b_{k}]}$$

$$\ge \int_{I_{k}} |e_{k} M - r_{k}| dx/(s+1) \ge (\| r_{k} \| - M)/(s+1)$$

Therefore $\underline{\lim}_{k\to\infty} ||| f_k - r_k ||| / ||| r_k ||| \ge 1/(s+1)$. The proof is completed.

Now we are ready to answer the question of existence.

THEOREM 1.3. If $m \leq 1$, then for every $f \in C[0, 1]$ there is at least one best approximation to f from \mathbb{R}_m^n .

Proof. Let $E = \inf\{ || | f - r || : r \in \mathbb{R}_m^n \}$. There is a sequence $\{r_k\}$ in \mathbb{R}_m^n such that $|| | f - r_k || \to E$ as $k \to +\infty$.

Set $r_k = p_k/q_k$ for k = 1, 2, Without loss of generality assume $||q_k|| = 1$. So $|||q_k f - p_k||| \le E + 1$ for sufficiently large k, and $\{||p_k||\}$ is bounded by Lemma 1.1. We can take a convergent subsequence of p_k and one of q_k (again denoted by p_k, q_k), say $p_k \to p$ and $q_k \to q$ as $k \to \infty$. Since $q \ge 0$ on $[0, 1], q \in P_m$ and $m \le 1, q$ has at most one zero which is 0 or 1. It therefore follows that for every $\varepsilon > 0, p_k/q_k \to p/q$ uniformly on $[\varepsilon, 1 - \varepsilon]$.

Next we show that p(0) = 0 when q(0) = 0. Suppose to the contrary that $p(0) \neq 0$. Then there is a real c, 0 < c < 1, and an integer K > 0 such that for some e = 1 or -1, fixed, $ep_k(x) > 0$ on [0, c] for every k > K. Thus $ep_k(x)/q_k(x) > 0$ on [0, c] and $|||r_k||| \ge e \int_{[0,c]} p_k/q_k dx$ for k > K. Hence $\{|||r_k|||\}$ and $\{|||f - r_k|||\}$ are all not bounded by Lemma 1.2. This is a contradiction. In the same way we have p(1) = 0 when q(1) = 0. Therefore whether or not q(x) has a zero in $[0, 1], r_0 = p/q$ is well defined in \mathbb{R}_m^n .

It remains to show that r_0 is a best approximation to f. Assume that $(a, b) \subset [0, 1]$ is such that for some e = 1 or -1, fixed, $e(f - r_0) > 0$ on

(a, b) and $e \int_{a}^{b} (f - r_0) dx = ||f - r_0|||$. Thus for every ε with $0 < \varepsilon < (b - a)/2$, one has that $e(f - r_k) > 0$ on $[a + \varepsilon, b - \varepsilon]$ and

$$e\int_{a+v}^{b-v} (f-r_k) \, dx \leq \|f-r_k\|$$

for sufficiently large k. Letting $k \to \infty$ and $\varepsilon \to 0$, one has that $|||f - r_0|| \le E$ and r_0 is a best approximation to f. The proof is completed.

For the remaining case, one has:

THEOREM 1.4. If $m \ge 2$, then there exists a function f in C[0, 1] such that f does not have a best approximation from R_m^n .

Proof. Define a function f(x) in C[0, 1] such that

$$f'(x) = \begin{cases} (n+2)/2 & \text{for } x = 1/(2n+4) \\ (-1)^k (n+2)/4 & \text{for } x = (2k+1)/(2n+4), k = 1, ..., n+1 \\ 0 & \text{for } x = i/(n+2), i = 0, 1, ..., n+2, \end{cases}$$

and f(x) is linear in each of the remaining intervals. Set, for k = 0, 1, ..., n + 1, $I_k = (k/(n+2), (k+1)/(n+2))$. Obviously $(-1)^k f > 0$ on I_k for k = 0, 1, ..., n + 1, and

$$(-1)^k \int_{I_k} f(x) \, dx = \begin{cases} \frac{1}{4} & \text{for } k = 0, \\ \frac{1}{8} & \text{for } k = 1, 2, \dots, n+1. \end{cases}$$

We claim that $|||f-r||| > \frac{1}{8}$ for every $r \in \mathbb{R}_m^n$. In fact if r = 0, then $||f-r||| = \frac{1}{4}$. If $r \in \mathbb{R}_m^n$ and $r \neq 0$, then there must be an interval I_s with $0 \le s \le n+1$ such that $(-1)^s r \le 0$ and $r \neq 0$ on I_s . Therefore $(-1)^s (f-r) \ge (-1)^s f > 0$ on I_s and $|||f-r||| \ge (-1)^s \int_{I_s} (f-r) dx \ge \frac{1}{8}$.

Next we show that $\inf\{|||f-r||| : r \in \mathbb{R}_m^n\} = \frac{1}{8}$. Set

$$r_k(x) = \frac{k}{4k^5(x-t)^2 + 1},$$

where t = 1/(2n + 4). Then for $k = 1, 2, ..., r_k \in R_m^n$, $r_k > 0$ on [0, 1], and

$$\lim_{k \to \infty} r_k(x) = \begin{cases} +\infty & \text{for } x = t \\ 0 & \text{for } x \neq t. \end{cases}$$
(1.3)

Hence in (0, 1/(n+2)) $f - r_k$ has four sign changes at the points $z_1 < z_2 < z_3 < z_4$ with $z_1 \to 0$ and $z_4 \to 1/(n+2)$ as $k \to \infty$. Noting that

 $(f-r_k)(t-1/k^2) = (f-r_k)(t+1/k^2) \rightarrow (2n+3)/4 > 0$ as $k \rightarrow \infty$, we also have $z_2 \in (t-1/k^2, t)$ and $z_3 \in (t, t+1/k^2)$ for sufficiently large k. Therefore

$$\int_{0}^{z_{1}} |f - r_{k}| \, dx \to 0 \qquad \text{as} \quad k \to \infty,$$

$$\int_{z_{1}}^{z_{2}} (f - r_{k}) \, dx = \int_{z_{3}}^{z_{4}} (f - r_{k}) \, dx < \int_{0}^{r} f \, dx = \frac{1}{8}$$

$$\int_{z_{2}}^{z_{4}} (r_{k} - f) \, dx < \int_{t-1/k^{2}}^{t+1/k^{2}} r_{k} \, dx \le \frac{2}{k}$$

•

and $|||f - r_k||_{[0,z_4]} < \frac{1}{8}$ for sufficiently large k. Since $\int_0^1 |r_k| dx = o(1/k)$, it follows from (1.3) that $|||f - r_k||_{[z_4,1]} = \frac{1}{8} + o(1/k)$. Hence $|||f - r_k||| = \frac{1}{8} + o(1/k)$ and

$$\inf\{\|\|f - r\|: r \in R_m^n\} = \frac{1}{8}.$$

The proof is completed.

2. Alternation Theorem

This section is devoted to the characterization of best approximants. We need some basic definitions.

DEFINITION 2.1. For $f \in C[0, 1]$, an extremal interval of f in [0, 1] is an open interval $I \subset [0, 1]$, which for some e = 1 or -1 (the signum of I) satisfies:

- (1) $ef \ge 0$ on I,
- (2) $e \int_{I} f(x) dx \ge ||| f |||.$

DEFINITION 2.2. For $f \in C[0, 1]$, a maximal-definite interval of f in [0, 1] is an extremal interval $I = (\alpha, \beta)$ of f, which for e = sign(I) satisfies:

(i) if J is an open subinterval of (0, 1), $I \subset J$ and $ef \ge 0$ on J, then f=0 on $J \setminus I$;

(ii) there is no open, nonempty subinterval of I having α or β as an endpoint throughout which f = 0.

As shown in [2], every f in C[0, 1] has finite maximal-definite intervals, and they are all mutually disjoint.

Now we are ready to establish:

THEOREM 2.3. For $f \in C[0, 1]$, the irreducible rational function $r_0 = p_0/q_0$

is a best approximation to f from \mathbb{R}_m^n if and only if $f - r_0$ has at least s alternating extremal intervals in [0, 1]; i.e., $f - r_0$ has at least s extremal intervals $I_1 < I_2 < \cdots < I_s$ with

$$sign(I_i) = -sign(I_{i+1})$$
 for $i = 1, 2, ..., s - 1$,

where $s = \max{\{\partial p_0 + m, \partial q_0 + n\}} + 2$ and ∂p_0 denotes the degree of p_0 .

Proof. Assume that $I_1 < I_2 < \cdots < I_s$ are s alternating intervals of $f - r_0$ and sign $(I_1) = -e$. If there is $r_1 = p_1/q_1$ in \mathbb{R}^n_m such that

$$|||f - r_1|| < |||f - r_0||, \tag{2.1}$$

then for i = 1, 2, ..., s, there exists $x_i \in I_i$ satisfying

$$(-1)^{i} e(r_{0} - r_{1})(x_{i}) \leq 0.$$
(2.2)

Otherwise if for some *i* with $1 \le i \le s$, $(-1)^i e(r_0 - r_1) > 0$ on I_i , then $(-1)^i e(f - r_1) > (-1)^i e(f - r_0) \ge 0$ on I_i and

$$|||f - r_1||| \ge (-1)^i e \int_{I_i} (f - r_1) dx$$

> $(-1)^i e \int_{I_i} (f - r_0) dx \ge |||f - r_0|||$

a contradiction. From (2.2) and the fact that $\{p + qr_0 : p \in P_n, q \in P_m\}$ is a (s-1)-dimensional Chebyshev subspace (Lemma, [1, p. 162]), it follows that $q_1r_0 - p_1 = 0$, i.e., $r_0 = r_1$. This contradiction completes the sufficiency of the theorem.

Assume that r_0 is a best approximation to f from R_m^n and all its maximaldefinite intervals are

$$I_{1}, I_{2}, ..., I_{m_{1}},$$
$$I_{m_{1}+1}, ..., I_{m_{2}},$$
$$...$$
$$I_{m_{l-1}+1}, ..., I_{m_{l}},$$

where $I_k < I_{k+1}$ for $1 \le k \le m_i - 1$, and for e = 1 or -1, fixed,

$$\operatorname{sign}(I_i) = (-1)^j e$$
 for $m_i + 1 \leq i \leq m_{i+1}$

with $0 \le j \le t-1$ and $m_0 = 0$. We show that $t \ge s$. If this is not the case, then for j = 1, 2, ..., t-1, a real x_j can be chosen so that $I_{m_j} < x_j < I_{m_j+1}$ and $(f-r_0)(x_j) = 0$. By virtue of Lemma of [1, p. 162] there are $p \in P_n$ and

MA AND SHI

 $q \in P_m$ such that for $j = 0, 1, ..., t - 1, (-1)^j e(p + qr_0) > 0$ on (x_j, x_{j+1}) with $x_0 = 0$ and $x_i = 1$. Since $(f - (p_0 + \lambda p)/(q_0 - \lambda q))(x_i) = 0$ for every $\lambda > 0$, it follows that

$$\|f - (p_0 + \lambda p)/(q_0 - \lambda q)\| = \max\{\|f - (p_0 + \lambda p)/(q_0 - \lambda q)\|_{\{x_i, x_{i+1}\}} : 0 \le j \le t - 1\}.$$
 (2.3)

Noting that $q_0 - \lambda q > 0$ on [0, 1] for sufficiently small $\lambda > 0$, we need only show that for j = 0, 1, ..., t - 1,

$$\|f - (p_0 + \lambda p)/(q_0 - \lambda q)\|_{[\lambda_p, \lambda_{r+1}]} < \|f - r_0\|,$$
(2.4)

when $\lambda > 0$ becomes sufficiently small.

Suppose to the contrary that for some j with $0 \le j \le t - 1$, (2.4) is not true. For k = 1, 2, ..., there is $\lambda_k > 0$ such that $q_0 - \lambda_k q > 0, \lambda_k \to 0$, and $\|f - (p_0 + \lambda_k p)/(q_0 - \lambda_k q)\|_{[x_0, x_{t+1}]} \ge \|f - r_0\|$. Then for k = 1, 2, ..., aninterval $(a_k, b_k) \subset [x_i, x_{i+1}]$ can be chosen so that for some $e_k = 1$ or -1,

$$\begin{cases} e_k(f - (p_0 + \lambda_k p)/(q_0 - \lambda_k q)) > 0 & \text{on } (a_k, b_k) \\ e_k \int_{a_k}^{b_k} (f - (p_0 + \lambda_k p)/(q_0 - \lambda_k q)) \, dx \ge \| f - r_0 \|. \end{cases}$$
(2.5)

By passing to subsequences, if necessary, we may assume that $a_k \rightarrow a$, $b_k \rightarrow b$ as $k \rightarrow \infty$, and $e_k = \bar{e}$ for all k. Obviously $(a, b) \subset [x_i, x_{i+1}]$. Letting $k \rightarrow \infty$ in (2.5), one obtains

$$\vec{e}(f-r_0) \ge 0 \qquad \text{on } (a,b)$$
$$\vec{e} \int_a^b (f-r_0) \, dx \ge ||f-r_0|||.$$

Hence (a, b) must intersect some maximal-definite interval with the signum \bar{e} , and (2.3) implies that $\bar{e} = (-1)^{j} e$. It follows by (2.5) that $(-1)^{j} e(f - r_0)$ $\geq (-1)^{j} e(f - (p_{0} + \lambda_{k} p)/(q_{0} - \lambda_{k} q)) + (-1)^{j} e \lambda_{k} (p + qr_{0})/(q_{0} - \lambda_{k} q) > 0$ on (a_k, b_k) and

$$\|\|f - r_0\| \ge (-1)^j e \int_{a_k}^{b_k} (f - r_0) \, dx$$

> $(-1)^j e \int_{a_k}^{b_k} (f - (p_0 + \lambda_k p)/(q_0 - \lambda_k q)) \, dx$
$$\ge \||f - r_0||.$$

This contradiction completes the proof of the theorem.

268

3. UNIQUENESS

Using the same method as that in the proof of the sufficiency of Theorem 2.3, one can obtain:

THEOREM 3.1. Each f in C[0, 1] has at most one best approximation from R_m^n .

Furthermore a strong uniqueness theorem is presented.

THEOREM 3.2. Assume that the ireducible rational function $r_0 = p_0/q_0$ is the best approximation to f from R_m^n and $(\partial p_0 - n)(\partial q_0 - m) = 0$. Then there exists a real c > 0 such that for every $r \in R_m^n$,

$$\|f - r\| \ge \|f - r_0\| + c \|r - r_0\|.$$
(3.1)

Proof. If $r = r_0$, (3.1) is trivial. Set, for $r \in \mathbb{R}_m^n$ with $r \neq r_0$, $\alpha(r) = (\||f - r\|| - |||f - r_0|||)/||, r - r_0|||$. It is sufficient to show that $\alpha(r)$ has a positive infimum for all $r \in \mathbb{R}_m^n$ with $r \neq r_0$. Suppose not. Then for k = 1, 2, ..., there exists $r_k = p_k/q_k$ in \mathbb{R}_m^n such that $||p_k|| + ||q_k|| = 1$ and $\alpha(r_k) \to 0$ as $k \to \infty$.

Since $r_k - r_0 \in R_{2m}^{m+n}$, by Lemma 1.2 we have that $\{|||r_k - r_0|||\}$ is bounded. Thus $|||f - r_k||_1 \to |||f - r_0||_1$. Without loss of generality we may assume that $p_k \to p$ and $q_k \to q$ uniformly. By virtue of Theorem 2.3 there exist m + n + 2 open intervals $I_0 < I_1 \cdots < I_{m+n+1}$ in [0, 1] and e = 1 or -1, fixed, such that for every *i* with $0 \le i \le n + m + 1$, $(-1)^i e(f - r_0) \ge 0$ on I_i and $(-1)^i e \int_{I_i} (f - r_0) dx \ge ||_i f - r_0||$. We claim that for every *k* one can chose an integer j(k) with $0 \le j(k) \le m + n + 1$ such that

$$e(-1)^{j(k)}(r_k - r_0) < 0$$
 on $I_{i(k)}$. (3.2)

If for some k this is not the case, then for each j = 0, 1, ..., m + n + 1, there exists a real $x_j \in I_j$ such that $e(-1)^j (r_k - r_0)(x_j) \ge 0$. Hence by Lemma of [1, p. 162] and Assertion of [4, p. 61] we have $r_k = r_0$, which contradicts the choice of r_k . Without loss of generality, assume $j(k) = \bar{m}$ for all k. Therefore, by virtue of (3.2), one has

$$\begin{aligned} \alpha(r_k) \| \|r_k - r_0\| &= \| \|f - r_k\|_1 - \| \|f - r_0\| \\ \geqslant (-1)^m e \int_{I_{\bar{m}}} (f - r_k) \, dx - (-1)^m \, e \int_{I_m} (f - r_0) \, dx \\ &= e(-1)^{\bar{m}} \int_{I_{\bar{m}}} (r_0 - r_k) \, dx = \int_{I_m} |r_k - r_0| \, dx. \end{aligned}$$
(3.3)

Since q has at most m zeros, a closed interval $\tilde{I} \subset I_m$ can be chosen so that

q > 0 on \tilde{I} . Hence by (3.3), $\int_{\tilde{I}} |p/q - r_0| dx = \lim_{k \to \infty} \int_{\tilde{I}} |r_k - r_0| dx = 0$ and $p/q = r_0$. By $(\partial p_0 - n)(\partial q_0 - m) = 0$ and Lemma 2 of [1, p. 165] we have $p = p_0$ and $q = q_0$ (assume $||p_0|| + ||q_0|| = 1$). Thus q > 0 and $q_k \ge \beta_1 > 0$ on [0, 1] for sufficiently large k. Let $\beta_2 = \inf\{\int_{I_m} |\tilde{p} + \tilde{q}r_0| dx : \tilde{p} \in P_n, \tilde{q} \in P_m, \|\tilde{p} + \tilde{q}r_0\| = 1\}$. Then $\beta_2 > 0$ and for sufficiently large k

$$\begin{aligned} \alpha(r_k) \| \|r_k - r_0\| &\leq \int_{I_m} |r_k - r_0| \, dx \\ &= \int_{I_m} |p_k - q_k r_0| / |q_k| \, dx \geq \int_{I_m} |p_k - q_k r_0| \, dx \\ &\geq \beta_2 \| |p_k - q_k r_0\| \geq \beta_1 \beta_2 \| |r_k - r_0\| \\ &\geq \beta_1 \beta_2 \| \|r_k - r_0\|. \end{aligned}$$

Since $|||r_k - r_0||| \neq 0$ the above equality contradicts the assumption that $\alpha(r_k) \rightarrow 0$. This contradiction completes the proof of the theorem.

4. CONTINUITY

For $f \in C[0, 1]$, let $Tf \in \mathbb{R}_m^n$ be the best approximation to f provided that one exists. The continuity of the operator T can be stated as follows:

THEOREM 4.1. Assume that the irreducible rational function $r_0 = p_0/q_0$ is the best approximation to f_0 from R_m^n and $(\partial p_0 - n)(\partial q_0 - m) = 0$. Then for every $\varepsilon > 0$, there is a real $\delta > 0$ such that every f in C[0, 1] with $||f - f_0|| < \delta$ has a best approximation from R_m^n and $||Tf - Tf_0|| < \varepsilon$.

Proof. First we show that for every $\varepsilon > 0$, there exists a real $\delta_1 > 0$ such that $||Tf - Tf_0|| < \varepsilon$ whenever $||f - f_0|| < \delta_1$ and f has a best approximation Tf. Suppose to the contrary that for some $\varepsilon > 0$ there exists a sequence $\{f_k\}$ in C[0, 1] such that $||f_k - f|| \to 0$ as $k \to \infty$, Tf_k exists for all k, and $||Tf_k - Tf_0|| \ge \varepsilon$. Let $Tf_k = p_k/q_k$. Without loss of generality we assume that $||p_0|| + ||q_0|| = ||p_k|| + ||q_k|| = 1$. By passing to subsequence, if necessary, assume that $p_k \to p$, $q_k \to q$, $|||f_k - Tf_k||| \to c$ as $k \to \infty$, and $\partial p_k = \partial p$, $\partial q_k = \partial q$ for every k. Since $q \ge 0$ on [0, 1], q can be decomposed as $q(x) = (x - z_1)^{s_1} \cdots (x - z_n)^{s_n} \tilde{q}(x)$, where $z_j \in [0, 1]$ for j = 1, ..., v, and $\tilde{q}(x) \neq 0$ on [0, 1]. For concreteness, assume $\tilde{q} > 0$ on [0, 1]. Using the method in the proof of Theorem 1.3, one can show that p must have the form $p(x) = (x - z_1)^{s_1} \cdots (x - z_n)^{s_n} \tilde{p}(x)$.

We consider the following two cases:

(i) $c \ge || f - r_0 ||$. By Theorem 2.3 for k = 1, 2, ..., there are

 $s = \max{\{\partial p + m, \partial q + n\}} + 2$ open intervals $I_1^{(k)} < \cdots < I_s^{(k)}$ and $e_k = 1$ or -1, fixed, such that for i = 1, 2, ..., s,

$$(-1)^{i}e_{k}(f_{k}-Tf_{k}) \ge 0$$
 on $I_{i}^{(k)}$ (4.1)

and

$$(-1)^{i} e_{k} \int_{f_{i}^{(k)}} (f_{k} - Tf_{k}) \, dx \ge |||f_{k} - r_{k}|||.$$

$$(4.2)$$

Write $I_i^{(k)} = (a_i^{(k)}, b_i^{(k)})$ for i = 1, ..., s. By passing to subsequences, if necessary, assume that $a_i^{(k)} \rightarrow a_i, b_i^{(k)} \rightarrow b_i$ as $k \rightarrow \infty$ for each i = 1, ..., s, and $e_k = e$ for all k, where e = 1 or -1, fixed. Thus $a_1 < b_1 \le a_2 < \cdots \le a_s < b_s$.

It is shown that if q > 0 on $[a_i, b_i]$ for some *i* with $1 \le i \le s$, then there is a real $x_i \in (a_i, b_i)$ such that

$$(-1)^{i}e(\tilde{p}-\tilde{q}r_{0})(x_{i}) \leq 0.$$
 (4.3)

Suppose to the contrary that $(-1)^i e(\tilde{p} - \tilde{q}r_0) > 0$ on (a_i, b_i) and q > 0 on $[a_i, b_i]$. Then $Tf_k \to \tilde{p}/\tilde{q}$, uniformly, on $[a_i, b_i]$. Letting $k \to \infty$ in (4.1) and (4.2), one has that $(-1)^i e(f - r_0) = (-1)^i e(f - \tilde{p}/\tilde{q}) + (-1)^i e(\tilde{p}/\tilde{q} - r_0) > 0$ on (a_i, b_i) and

$$|||f - r_0||| \ge (-1)^i e \int_{a_i}^{b_i} (f - r_0) \, dx$$
$$\ge c + (-1)^i e \int_{a_i}^{b_i} (\hat{p}/\hat{q} - r_0) \, dx > c,$$

which is a contradiction.

Now set $M := \{0, s\} \cup \{i : 1 \le i \le s, [a_i, b_i] \cap \{z_1, ..., z_v\} = \emptyset\} \equiv \{i_1 < \cdots < i_{\tilde{s}}\}, \ \tilde{M} := \{t : 1 \le t \le \tilde{s}, \ i_{t+1} - i_t \text{ is odd}\}, \text{ and } Z(a, b) = \sum_{a \le z_{-j} \le b} s_j \text{ with } 0 \le a < b \le 1.$ Since z_j intersects at most two intervals in $\{[a_i, b_i] : i = 1, 2, ..., s\}$ and s_j is even provided $z_j \in (0, 1)$ for each j = 1, 2, ..., v, it follows that for $t = 1, ..., \tilde{s} - 1$,

$$Z(b_{i_{t}}, a_{i_{t+1}}) \ge \begin{cases} i_{t+1} - i_{t} & \text{if } i_{t+1} - i_{t} \text{ is even} \\ i_{t+1} - i_{t} - 1 & \text{if } i_{t+1} - i_{t} \text{ is odd.} \end{cases}$$

Therefore $s \leq Z(b_1, a_s) + \operatorname{card}(\tilde{M}) \leq Z(0, 1) + \operatorname{card}(\tilde{M})$. By the definition of \tilde{M} and (4.3), $q_0 \tilde{p}/\tilde{q} - p_0$ has at least s - Z(0, 1) weak sign changes in [0, 1] [5, Definition 13-1]. By Lemma of [1, p. 162] and Assertion of [4, p. 61] we have $p_0 = q_0 \tilde{p}/\tilde{q}$. Since $(\partial p_0 - n)(\partial q_0 - m) = 0$, it follows that $p/q = \tilde{p}/\tilde{q} = p_0/q_0$ and $q = \tilde{q} > 0$ on [0, 1]. Thus $Tf_k \to r_0$, uniformly, on [0, 1], which contradicts the assumption that $||Tf_k - r_0|| \ge \varepsilon$.

MA AND SHI

(ii) $c < |||f - r_0||$. By an analogous discussion on the alternating intervals of $f - r_0$, one can also obtain that $Tf_k \to r_0$, uniformly, as $k \to \infty$. The same contradiction as that in (i) is obtained.

Next we show that there exists a real $\delta_2 > 0$ such that every f with $||f - f_0|| < \delta_2$ has a best approximation.

Assume $||p_0|| + ||q_0|| = 1$. Let $2\varepsilon_1 = \inf_{0 \le x \le 1} q_0(x) > 0$. We claim that there exists an $\varepsilon_2 > 0$ such that

$$\left\| \begin{array}{c} \| p \| + \| q \| = 1 \\ r = p/q \in R_m^n \\ \| r - r_0 \| < \varepsilon_2 \end{array} \right\} \Rightarrow \| q - q_0 \| < \varepsilon_1.$$

Otherwise there exists a sequence $\{r_k = p_k/q_k\}$ in \mathbb{R}_m^n with $||p_k|| + ||q_k|| = 1$, $||q_k - q_0|| \ge \varepsilon_1$ for each k, and $r_k \to r_0$ as $k \to \infty$. By passing to subsequences, if necessary, assume that $p_k \to p$ and $q_k \to q$ as $k \to \infty$. Then $p = qr_0$ and by Lemma 2 of [1, p. 165], $p = p_0$ and $q = q_0$, a contradiction.

Now a real δ_2 can be chosen so that for every f with $||f - f_0|| < \delta_2$, its best approximation r (if it exists) satisfies that $||r - r_0|| < \varepsilon_2$. Write r = p/q with ||p|| + ||q|| = 1. Thus $||q - q_0|| < \varepsilon_1$ and $q(x) > \varepsilon_1$ on [0, 1]. Therefore our search for r can be confined to the set

$$G := \{ p/q : p/q \in \mathbb{R}_m^n, q > \varepsilon_1 \}.$$

It is elementary to show that G is compact and f has a best approximation from G (and thus from R_m^n).

 $\delta = \min{\{\delta_1, \delta_2\}}$ is just what is needed in the theorem. The proof is completed.

If we consider the "continuity" of the operator T with respect to the measure $\| \cdot \|$ in the sense: given $f_0 \in C[0, 1]$, T is continuous at f_0 if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\| Tf - Tf_0 \| < \varepsilon$ whenever $\| f - f_0 \| < \delta$, we can obtain the following result.

THEOREM 4.2. The operator T is "discontinuous" everywhere in C[0, 1] with respect to $\||\cdot\||$.

Proof. Assume that $f_0 \in C[0, 1]$ has a best approximation Tf_0 from R_m^n . Write $Tf_0 = p_0/q_0$. By Theorem 2.3 there exist $s = \max{\{\partial p_0 + m, \partial q_0 + n\}} + 2$ open intervals $I_1 < \cdots < I_s$ such that for i = 1, 2, ..., s,

$$(-1)^{i} e(f_{0} - Tf_{0}) \ge 0$$
 on I_{i}
 $(-1)^{i} e \int_{I_{i}} (f_{0} - Tf_{0}) dx \ge ||f_{0} - Tf_{0}||.$

For c > 0 sufficiently small we can choose *s* closed intervals $\tilde{I}_1 < \cdots < \tilde{I}_s$ such that $(-1)^i e(f_0 - Tf_0 - c/q_0) \ge 0$ on \tilde{I}_i and $f_0 - Tf_0 - c/q_0 = 0$ at both endpoints of \tilde{I}_i for each i = 1, 2, ..., s. Let $\tilde{c} = \inf\{||f_0 - Tf_0 - c/q_0||_{\tilde{I}_i}: 1 \le i \le s\}$ and $\tilde{I}_i = [a_i, b_i]$. Now for every $\delta > 0$, define a function in C[0, 1] such that for i = 1, 2, ..., s,

$$(-1)^{i}e(f - Tf_{0} - c/q_{0}) \ge 0$$
 on \tilde{I}_{i} ,
 $\|f - Tf_{0} - c/q_{0}\|_{\tilde{I}_{i}} = \tilde{c}$,
 $(f - Tf_{0} - c/q_{0})(a_{i}) = (f - Tf_{0} - c/q_{0})(b_{i}) = 0$

and $|||f - Tf_0 - c/q_0|| = \tilde{c}$, $|||f - f_0||| < \delta$. This function can be constructed directly (some oscillating function between f_0 and $Tf_0 + c/q_0$ will meet the above requirements). Thus $\tilde{I}_1, ..., \tilde{I}_s$ are *s* alternating intervals of $f - Tf_0 - c/q_0$. Since $\max\{\partial(p_0 + c) + m, \partial q_0 + n\} + 2 = s$, it follows that $Tf = (p_0 + c)/q_0$. However, $||f - f_0|| < \delta$ and $|||Tf - Tf_0|| = c |||1/q_0|| > 0$. Hence the operator *T* is "discontinuous" at f_0 . The proof is completed.

The "discontinuity" of best approximation from P_n with respect to $\|\cdot\|$ can also be obtained as a special case of Theorem 4.2 with m = 0.

ACKNOWLEDGMENTS

We are grateful to the referees for many helpful suggestions concerning the rewriting of our original version.

References

- 1. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 2. A. PINKUS AND O. SHISHA, Variations on the Chebyshev and L^{*q*} theories of best approximation, J. Approx. Theory **35** (1982), 148–168.
- 3. ZHIWEI MA, Some problems on a variation of L_1 approximation, J. Approx. Theory, in press.
- 4. J. R. RICE, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, MA, 1964.
- 5. J. R. RICE, "The Approximation of Functions," Vol. 2, Addison Wesley, Reading, MA, 1969.