A Variation of Rational L_{1} Approximation*
 Zhiwfi Ma
 Department of Applied Mathematies, Beifing Limersity of Acronatios and Astronamics. Beiling. Peoples Repuhlic of China
 AND
 Yingguang Shi
 Computing Center, Acudemiu Sinica. Beijing. Peoples Republic of China
 Communicated br A. Pinkus

Received June 6. 1988; revised October 19, 1988

Abstract

A new approximating method proposed by A. Pinkus and O. Shisha is extended to rational approximation. The existence, characterization, uniqueness, strong uniqueness. and continuity of best approximation are established. "1990 Academic Press. Inc

Notation

For $f \in C[0,1]$, the measure $\|\|\cdot\|$ introduced by Pinkus and Shisha [2] is

$$
\|f\| \| \sup _{u \leq a \leq h \leq 1}\left\{\left|\int_{a}^{h} f d x\right|: f(x)>0 \text { on }(a, b) \text { or } f(x)<0 \text { on }(a, b)\right\} .
$$

With this measure, Pinkus and Shisha have studied best approximation from the set of algebraic polynomials of degree $\leqslant n$, and have established some remarkable results. Set

$$
\begin{gathered}
R_{m}^{n}:=\left\{p / q: p \in P_{n}, q \in P_{m}, p / q\right. \text { is irreducible, } \\
q>0 \text { on }[0,1]\},
\end{gathered}
$$

where P_{n} denotes the set of all real algebraic polynomials of degree $\leqslant n$. For $f \in C[0,1]$, one can consider the following problem: find $r_{0} \in R_{m}^{n}$ such

[^0]that $\left\|f^{\prime}-r_{0}\right\|_{i}=\inf \left\{\|f-r\|: r \in R_{m}^{n}\right\}$. Any such r_{0} is called a best approximation to f from R_{m}^{n} (with respect to $\left\|_{:} \cdot\right\|^{\text {) }}$).

In this paper we consider the basic questions of existence, characterization, uniqueness, and continuity of best approximation, and get some interesting results analogous to the well-known theorems for the Chebyshev norm $\|\cdot\|$ (throughout this paper $\|\cdot\|$ denotes $\|\cdot\|$,).

1. Existence

Using the method in the proof of Theorem 2.5 of [2], one can obtain:
Lemma 1.1. Assume that for $k=1,2, \ldots, f_{k} \in C[0,1], p_{k} \in P_{n}$, and $\left\{\left\|f_{k}\right\|\right\}$ is bounded. Then the sequence $\left\{\left\|p_{k}\right\|\right\}$ is bounded whenever $\left\{\left\|f f_{k}-p_{k}\right\|\right\}$ is bounded.

We also need:

Lemma 1.2. Assume that for $k=1,2, \ldots, r_{k} \in R_{m}^{n}, f_{k} \in C[0,1]$, and $\left\{\left\|f_{k}\right\|\right\}$ is bounded. If $\left\|r_{k}\right\| \rightarrow+\infty$, then

$$
\underline{\lim }_{k \cdot \alpha}\| \| f_{k}-r_{k}\|/\| /\left\|_{i} r_{k}\right\| \geqslant \frac{1}{s+1}
$$

where $s=\max \{m, n\}$.
Proof. Assume that for $k=1,2, \ldots$, an open interval $I_{k}=\left(a_{k}, b_{k}\right)$ in $[0,1]$ is such that for some $e_{k}=1$ or -1 , fixed, $e_{k} r_{k}>0$ on I_{k} and $e_{k} \int_{I_{k}} r_{k} d x=$ $\left\|r_{k}\right\|$. Let $\left\|f_{k}\right\| \leqslant M$ for $k=1,2, \ldots$. Without loss of generality assume that $\left\|r_{k}\right\|>(s+2) M$ for all $k>0$. Then $e_{k} M-r_{k}$ has at most s zeros in [0,1], for otherwise $r_{k}=e_{k} M$ on [0,1]. Hence

$$
\left\|e_{k} M-r_{k}\right\|_{\left\{a_{k}, b_{k}\right\}} \geqslant \frac{1}{s+1} \int_{J_{k}}\left|e_{k} M-r_{k}\right| d x
$$

Assume that an open interval $\tilde{I}_{k} \in I_{k}$ is chosen so that for some $\bar{e}_{k}=1$ or -1 , fixed,

$$
\begin{equation*}
\bar{e}_{k}\left(e_{k} M-r_{k}\right)>0 \quad \text { on } \tilde{I}_{k} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{e}_{k} \int_{\tilde{I}_{k}}\left(e_{k} M-r_{k}\right) d x=\left\|e_{k} M-r_{k}\right\|_{\left\lceil a_{k}, b_{k}\right\rceil} \tag{1.2}
\end{equation*}
$$

One must have $\bar{e}_{k}=-e_{k}$, for otherwise,

$$
\begin{aligned}
\left\|r_{k}\right\|_{l} & =e_{k} \int_{I_{k}} r_{k} d x \leqslant \int_{J_{k}}\left|e_{k} M-r_{k}\right| d x+M \\
& \leqslant(s+1) \bar{e}_{k} \int_{\tilde{I}_{k}}\left(e_{k} M-r_{k}\right) d x+M<(s+2) M
\end{aligned}
$$

By virtue of (1.1) and (1.2) with $\bar{e}_{k}=-e_{k}$, we have $-e_{k}\left(f_{k}-r_{k}\right) \geqslant$ $-M+e_{k} r_{k}=-e_{k}\left(e_{k} M-r_{k}\right)>0$ on \tilde{I}_{k} and

$$
\begin{aligned}
\left\|f_{k}-r_{k}\right\|_{i} & \geqslant-e_{k} \int_{T_{k}}\left(f_{k}-r_{k}\right) d x \\
& \geqslant-e_{k} \int_{T_{k}}\left(e_{k} M-r_{k}\right) d x=\left\|e_{k} M-r_{k}\right\|!\mid\left[u_{k}, r_{k}\right] \\
& \geqslant \int_{I_{k}}\left|e_{k} M-r_{k}\right| d x /(s+1) \geqslant\left(\left\|r_{k}\right\|_{\|}-M\right) /(s+1) .
\end{aligned}
$$

Therefore $\underline{\lim }_{k}, \quad\left\|f_{k}-r_{k}\right\| /\left\|r_{k}\right\| \geqslant 1 /(s+1)$. The proof is completed.
Now we are ready to answer the question of existence.

Theorem 1.3. If $m \leqslant 1$, then for every $f \in C[0,1]$ there is at least one best approximation to from R_{m}^{n}.

Proof. Let $E=\inf _{\{ }\left\{\|f-r\|: r \in R_{m}^{n}\right\}$. There is a sequence $\left\{r_{k}\right\}$ in R_{m}^{n} such that $\left\|f-r_{k}\right\| \rightarrow E$ as $k \rightarrow+\infty$.

Set $r_{k}=p_{k} / q_{k}$ for $k=1,2, \ldots$. Without loss of generality assume $\left\|q_{k}\right\|=1$. So $\left\|q_{k} f-p_{k}\right\| \leqslant E+1$ for sufficiently large k, and $\left\{\left\|p_{k}\right\|\right\}$ is bounded by Lemma 1.1. We can take a convergent subsequence of p_{k} and one of q_{k} (again denoted by p_{k}, q_{k}), say $p_{k} \rightarrow p$ and $q_{k} \rightarrow q$ as $k \rightarrow \infty$. Since $q \geqslant 0$ on [0,1],q $\in P_{m}$ and $m \leqslant 1, q$ has at most one zero which is 0 or 1 . It therefore follows that for every $\varepsilon>0, p_{k} / q_{k} \rightarrow p / q$ uniformly on $[\varepsilon, 1-\varepsilon]$.

Next we show that $p(0)=0$ when $q(0)=0$. Suppose to the contrary that $p(0) \neq 0$. Then there is a real $c, 0<c<1$, and an integer $K>0$ such that for some $e=1$ or -1 , fixed, $e p_{k}(x)>0$ on $[0, c]$ for every $k>K$. Thus $e p_{k}(x) / q_{k}(x)>0$ on $[0, c]$ and $\left\|r_{k}\right\|_{i} \geqslant e \int_{[0, c]} p_{k} / q_{k} d x$ for $k>K$. Hence $\left\{\left\|r_{k}\right\|\right\}$ and $\left\{\left\|f-r_{k}\right\|\right\}$ are all not bounded by Lemma 1.2. This is a contradiction. In the same way we have $p(1)=0$ when $q(1)=0$. Therefore whether or not $q(x)$ has a zero in $[0,1], r_{0}=p / q$ is well defined in R_{m}^{n}.

It remains to show that r_{0} is a best approximation to f. Assume that $(a, b) \subset[0,1]$ is such that for some $e=1$ or -1 , fixed, $e\left(f-r_{0}\right)>0$ on
(a, b) and $c \int_{a}^{b}\left(f-r_{0}\right) d x=\left\|f-r_{0}\right\|$. Thus for every $:$ with $0<\varepsilon<$ $(b-a) / 2$, one has that $e\left(f-r_{k}\right)>0$ on $[a+c, b-\varepsilon]$ and

$$
\left.c\right|_{a+\varepsilon} ^{\prime \prime}\left(f-r_{k}\right) d x \leqslant \| f-r_{k} \mid
$$

for sufficiently large k. Letting $k \rightarrow x$ and $\delta \rightarrow 0$, one has that $\left\|f-r_{0}\right\| \leqslant E$ and r_{0} is a best approximation to f. The proof is completed.

For the remaining case one has:

Theorem 1.4. If $m \geqslant 2$, then there exists a function f in $C[0,1]$ such that f does not have a hest approximation from $R_{m}^{\prime \prime}$.

Proof. Define a function $f(x)$ in $C[0,1]$ such that

$$
f(x)= \begin{cases}(n+2) / 2 & \text { for } \quad x=1 /(2 n+4) \\ (-1)^{k}(n+2) / 4 & \text { for } x=(2 k+1) /(2 n+4), k=1, \ldots, n+1 \\ 0 & \text { for } x=i /(n+2), i=0,1, \ldots, n+2\end{cases}
$$

and $f(x)$ is linear in each of the remaining intervals. Set, for $k=0,1, \ldots, n+1, I_{k}=(k /(n+2) .(k+1) /(n+2))$. Obviously $(-1)^{k} f>0$ on I_{k} for $k=0,1, \ldots, n+1$, and

$$
(-1)^{k} \int_{k} f(x) d x= \begin{cases}\frac{1}{4} & \text { for } k=0, \\ \frac{1}{x} & \text { for } k=1.2, \ldots, n+1\end{cases}
$$

We claim that $\|f-r\|>\frac{1}{8}$ for every $r \in R_{m}^{n}$. In fact if $r=0$, then $\|-r\|=\frac{1}{4}$. If $r \in R_{m}^{n}$ and $r \neq 0$, then there must be an interval I, with $0 \leqslant s \leqslant n+1$ such that $(-1)^{r} r \leqslant 0$ and $r \neq 0$ on I_{s}. Therefore $(-1)^{s}(f-r) \geqslant(-1)^{r} f>0$ on l_{s} and $\|f-r\| \geqslant(-1)^{r} \int_{l}(f-r) d x \geqslant \frac{1}{8}$.

Next we show that $\inf \left\{\|, f-r\| ;: r \in R_{m}^{n}\right\}=\frac{1}{8}$. Set

$$
r_{k}(x)=\frac{k}{4 k^{5}(x-t)^{2}+1}
$$

where $t=1 /(2 n+4)$. Then for $k=1,2, \ldots, r_{k} \in R_{m}^{n}, r_{k}>0$ on $[0,1]$, and

$$
\lim _{k} r_{k}(x)=\left\{\begin{array}{lll}
+x & \text { for } & x=t \tag{1.3}\\
0 & \text { for } & x \neq t
\end{array}\right.
$$

Hence in $(0,1 /(n+2)) f-r_{k}$ has four sign changes at the points $z_{1}<z_{2}<z_{3}<z_{4}$ with $z_{1} \rightarrow 0$ and $z_{4} \rightarrow 1 /(n+2)$ as $k \rightarrow \infty$. Noting that
$\left(f-r_{k}\right)\left(t-1 / k^{2}\right)=\left(f-r_{k}\right)\left(t+1 / k^{2}\right) \rightarrow(2 n+3) / 4>0$ as $k \rightarrow \infty$, we also have $z_{2} \in\left(t-1 / k^{2}, t\right)$ and $z_{3} \in\left(t, t+1 / k^{2}\right)$ for sufficiently large k. Therefore

$$
\begin{aligned}
& \int_{0}^{-1}\left|f-r_{k}\right| d x \rightarrow 0 \quad \text { as } \quad k \rightarrow x_{1} \\
& \int_{-1}^{* 2}\left(f-r_{k}\right) d x=\int_{-3}^{-1}\left(f-r_{k}\right) d x<\int_{0}^{r} f d x=\frac{1}{8} \\
& \int_{-2}^{-1}\left(r_{k}-f\right) d x<\int_{1 k 2}^{1+1 k^{2}} r_{k} d x \leqslant 2 k
\end{aligned}
$$

and $\left\lvert\,\left\|f-r_{k}\right\|_{[0, z 4]}<\frac{1}{8}\right.$ for sufficiently large k. Since $\int_{0}^{1}\left|r_{k}\right| d x=o(1 / k)$, it follows from (1.3) that $\left\|f-r_{k}\right\|_{\Gamma=4,1 \mid}=\frac{1}{8}+o(1 / k)$. Hence $\left\|f-r_{k}\right\|=$ $\frac{1}{8}+o(1 / k)$ and

$$
\inf \left\{\|i f-r\|: r \in R_{m}^{n}\right\}=\frac{1}{8} .
$$

The proof is completed.

2. Alternation Theorfm

This section is devoted to the characterization of best approximants. We need some basic definitions.

Definition 2.1. For $f \in C[0,1]$, an extremal interval of f in $[0,1]$ is an open interval $I \subset[0,1]$, which for some $e=1$ or -1 (the signum of I) satisfies:
(1) $e f \geqslant 0$ on I,
(2) $e \int_{I} f(x) d x \geqslant\|f\| \|$.

Definition 2.2. For $f \in C[0,1]$, a maximal-definite interval of f in $[0,1]$ is an extremal interval $I=(\alpha, \beta)$ of f, which for $e=\operatorname{sign}(I)$ satisfies:
(i) if J is an open subinterval of $(0,1), I \subset J$ and $e f \geqslant 0$ on J, then $f=0$ on $J \backslash I$;
(ii) there is no open, nonempty subinterval of I having x or β as an endpoint throughout which $f=0$.

As shown in [2], every f in $C[0,1]$ has finite maximal-definite intervals, and they are all mutually disjoint.

Now we are ready to establish:
Theorem 2.3. For $f \in C[0,1]$, the irreducible rational function $r_{0}=p_{0} / q_{0}$
is a best approximation to from R_{m}^{n} if and only if $f-r_{0}$ has at least s alternating extremal intervals in $[0,1] ;$ i.e., $f-r_{0}$ has at least s extremal intervals $I_{1}<I_{2}<\cdots<I_{s}$ with

$$
\operatorname{sign}\left(I_{i}\right)=-\operatorname{sign}\left(I_{i+1}\right) \quad \text { for } \quad i=1,2, \ldots, s-1
$$

where $s=\max \left\{\partial p_{0}+m, \partial q_{0}+n\right\}+2$ and ∂p_{0} denotes the degree of p_{0}.
Proof. Assume that $I_{1}<I_{2}<\cdots<I_{s}$ are s alternating intervals of $f-r_{0}$ and $\operatorname{sign}\left(I_{1}\right)=-e$. If there is $r_{1}=p_{1} / q_{1}$ in R_{m}^{n} such that

$$
\begin{equation*}
\left\|f-r_{1}\right\|<\left\|f-r_{0}\right\| \tag{2.1}
\end{equation*}
$$

then for $i=1,2, \ldots, s$, there exists $x_{i} \in I_{i}$ satisfying

$$
\begin{equation*}
(-1)^{i} e\left(r_{0}-r_{1}\right)\left(x_{i}\right) \leqslant 0 \tag{2.2}
\end{equation*}
$$

Otherwise if for some i with $1 \leqslant i \leqslant s,(-1)^{i} e\left(r_{0}-r_{1}\right)>0$ on I_{i}, then $(-1)^{i} e\left(f-r_{1}\right)>(-1)^{i} e\left(f-r_{0}\right) \geqslant 0$ on I_{i} and

$$
\begin{aligned}
\left\|f-r_{1}\right\| & \geqslant(-1)^{i} e \int_{L_{i}}\left(f-r_{1}\right) d x \\
& >(-1)^{i} e \int_{L_{i}}\left(f-r_{0}\right) d x \geqslant\left\|f-r_{0}\right\|
\end{aligned}
$$

a contradiction. From (2.2) and the fact that $\left\{p+q r_{0}: p \in P_{n}, q \in P_{m}\right\}$ is a ($s-1$)-dimensional Chebyshev subspace (Lemma, [1, p. 162]), it follows that $q_{1} r_{0}-p_{1}=0$, i.e., $r_{0}=r_{1}$. This contradiction completes the sufficiency of the theorem.

Assume that r_{0} is a best approximation to f from R_{m}^{n} and all its maximaldefinite intervals are

$$
\begin{aligned}
& I_{1}, I_{2}, \ldots, I_{m_{1}} \\
& I_{m_{1}+1}, \ldots, I_{m_{2}} \\
& \ldots \\
& I_{m_{i-1}+1}, \ldots, I_{m_{i}},
\end{aligned}
$$

where $I_{k}<I_{k+1}$ for $1 \leqslant k \leqslant m_{t}-1$, and for $e=1$ or -1 , fixed,

$$
\operatorname{sign}\left(I_{i}\right)=(-1)^{j} e \quad \text { for } \quad m_{j}+1 \leqslant i \leqslant m_{j+1}
$$

with $0 \leqslant j \leqslant t-1$ and $m_{0}=0$. We show that $t \geqslant s$. If this is not the case, then for $j=1,2, \ldots, t-1$, a real x_{j} can be chosen so that $I_{m_{j}}<x_{j}<I_{m_{j}+1}$ and $\left(f-r_{0}\right)\left(x_{j}\right)=0$. By virtue of Lemma of [1, p. 162] there are $p \in P_{n}$ and
$q \in P_{n}$ such that for $j=0,1, \ldots, t-1.1-1 / e\left(p+q r_{0}\right)>0$ on $\left(x_{j}, x_{i+1}\right)$ with $x_{0}=0$ and $x_{i}=1$. Since $\left(f-\left(p_{0}+i p\right)\left(q_{0}-i q\right)\right)\left(x_{j}\right)=0$ for every $i>0$, it follows that

$$
\begin{align*}
f- & \left(p_{0}+i p\right)\left(q_{0}-i q\right) \\
& =\max \left\{\| f-\left.\left(p_{0}+i p\right)\left(q_{0}-i q\right)\right|_{(1, \ldots, 1)}: 0 \leqslant j \leqslant t-1\right\} . \tag{2.3}
\end{align*}
$$

Noting that $q_{0}-i q>0$ on $[0.1]$ for sufficiently small $i>0$, we need only show that for $j=0,1, \ldots, t-1$,

$$
\begin{equation*}
i^{\prime} f-\left(p_{0}+\lambda p\right)\left(q_{1}-\lambda q\right)\left\|_{[\ldots,-1]}<\right\|-r_{0} \|_{1} . \tag{2.4}
\end{equation*}
$$

when $i>0$ becomes sufficiently small.
Suppose to the contrary that for some j with $0 \leqslant j \leqslant t-1,(2.4)$ is not true. For $k=1,2, \ldots$, there is $i_{k}>0$ such that $q_{0}-i_{k} q>0, i_{k} \rightarrow 0$, and $f f-\left(p_{0}+i_{k} p\right)\left(q_{0}-i_{k} q\right)\left\|_{\{, \ldots} \geqslant f-r_{0}\right\|$. Then for $k=1,2, \ldots$ an interval $\left(a_{k}, b_{k}\right) \subset\left[x_{i}, x_{j+1}\right]$ can be chosen so that for some $e_{k}=1$ or -1 ,

$$
\left\{\begin{array}{l}
e_{k}\left(f-\left(p_{0}+i_{k} p\right)\left(q_{0}-i_{k} q\right)\right)>0 \quad \text { on }\left(a_{k}, b_{k}\right) \tag{2.5}\\
\left.e_{k} \int_{c_{k}}^{b_{k}}\left(f-\left(p_{0}+i_{k} p\right)\left(q_{0}-i_{k} q\right)\right) d x \geqslant \| f-r_{n}\right)
\end{array}\right.
$$

By passing to subsequences, if necessary, we may assume that $a_{k} \rightarrow a$. $b_{k} \rightarrow b$ as $k \rightarrow \alpha$, and $e_{k}=\bar{e}$ for all k. Obviously $(a, b) \subset\left[x_{,}, x_{j+1}\right]$. Letting $k \rightarrow x$ in (2.5), one obtains

$$
\begin{aligned}
& \bar{c}\left(f-r_{0}\right) \geqslant 0 \quad \text { on }(a, b) \\
& \left.\bar{e}\right|_{a} ^{\prime \prime}\left(f-r_{0}\right) d x \geqslant f-r_{0} \| .
\end{aligned}
$$

Hence (a, b) must intersect some maximal-definite interval with the signum \bar{e}. and (2.3) implies that $\bar{e}=(-1)^{j} e$. It follows by (2.5) that $(-1)^{j} e\left(f-r_{0}\right)$ $\geqslant(-1)^{i} c\left(f-\left(p_{0}+i_{k} p\right) /\left(q_{0}-i_{k} q\right)\right)+(-1)^{i} e_{k}\left(p+q r_{0}\right) /\left(q_{0}-i_{k} q\right)>0$ on $\left(a_{k}, b_{k}\right)$ and

$$
\begin{aligned}
\left\|f-r_{0}\right\| \| & \geqslant(-1)^{j} e \int_{a_{k}}^{b_{k}}\left(f-r_{0}\right) d x \\
& >(-1)^{j} e \int_{a_{k}}^{h_{k}}\left(f-\left(p_{0}+i_{k} p\right)\left(q_{0}-i_{k} q\right)\right) d x \\
& \geqslant \mid f-r_{0} \| .
\end{aligned}
$$

This contradiction completes the proof of the theorem.

3. Uniqueness

Using the same method as that in the proof of the sufficiency of Theorem 2.3, one can obtain:

Theorem 3.1. Each f in $C[0,1]$ has at most one best approximation from R_{m}^{n}.

Furthermore a strong uniqueness theorem is presented.
Theorem 3.2. Assume that the ireducible rational function $r_{0}=p_{0} q_{0}$ is the best approximation to ffrom R_{m}^{n} and $\left(\hat{\partial} p_{0}-n\right)\left(\hat{c} q_{0}-m\right)=0$. Then there exists a real $c>0$ such that for every $r \in R_{m}^{n}$,

$$
\begin{equation*}
\|f-r\| \geqslant\left\|f-r_{0}\right\|+c\left\|r-r_{0}\right\|_{1} \tag{3.1}
\end{equation*}
$$

Proof. If $r=r_{0}$, (3.1) is trivial. Set, for $r \in R_{m}^{n}$ with $r \neq r_{0}$, $\alpha(r)=\left(\left\|_{i} f-r\right\|_{i}-\left\|f-r_{0}\right\|\left\|_{i} /\right\|_{i} r-r_{0} \|_{\|}\right.$. It is sufficient to show that $\alpha(r)$ has a positive infimum for all $r \in R_{m}^{n}$ with $r \neq r_{0}$. Suppose not. Then for $k=1,2, \ldots$, there exists $r_{k}=p_{k} / q_{k}$ in R_{m}^{n} such that $\left\|p_{k}\right\|+\left\|q_{k}\right\|=1$ and $x\left(r_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Since $r_{k}-r_{0} \in R_{2 m}^{m+n}$, by Lemma 1.2 we have that $\left\{\left\|r_{k}-r_{0}\right\| \|_{\}}\right.$is bounded. Thus $\left\|f-r_{k}\right\|_{i} \rightarrow\left\|f-r_{0}\right\|_{i}$. Without loss of generality we may assume that $p_{k} \rightarrow p$ and $q_{k} \rightarrow q$ uniformly. By virtue of Theorem 2.3 there exist $m+n+2$ open intervals $I_{0}<I_{1} \cdots<I_{m+n+1}$ in $[0,1]$ and $e=1$ or -1 , fixed, such that for every i with $0 \leqslant i \leqslant n+m+1,(-1)^{i} e\left(f-r_{0}\right) \geqslant 0$ on I_{i} and $(-1)^{i} e \int_{I_{i}}\left(f-r_{0}\right) d x \geqslant\left\|_{1} f-r_{0}\right\|^{i}$. We claim that for every k one can chose an integer $j(k)$ with $0 \leqslant j(k) \leqslant m+n+1$ such that

$$
\begin{equation*}
e(-1)^{\mu(k)}\left(r_{k}-r_{0}\right)<0 \quad \text { on } I_{j(k)} \tag{3.2}
\end{equation*}
$$

If for some k this is not the case, then for each $j=0,1, \ldots, m+n+1$, there exists a real $x_{j} \in I_{j}$ such that $e(-1)^{\prime}\left(r_{k}-r_{0}\right)\left(x_{j}\right) \geqslant 0$. Hence by Lemma of [1, p. 162] and Assertion of [4, p. 61] we have $r_{k}=r_{0}$, which contradicts the choice of r_{k}. Without loss of generality, assume $j(k)=\bar{m}$ for all k. Therefore, by virtue of (3.2), one has

$$
\begin{align*}
x\left(r_{k}\right)\left\|r_{k}-r_{0}\right\| \| & =\left\|f-r_{k}\right\|_{i}-\left\|f-r_{0}\right\| \\
& \geqslant(-1)^{m} e \int_{L_{n i}}\left(f-r_{k}\right) d x-(-1)^{m} e \int_{I_{m i}}\left(f-r_{0}\right) d x \\
& =e(-1)^{m} \int_{L_{m i}}\left(r_{0}-r_{k}\right) d x=\int_{l_{m i}}\left|r_{k}-r_{0}\right| d x . \tag{3.3}
\end{align*}
$$

Since q has at most m zeros, a closed interval $\tilde{I} \subset I_{m}$ can be chosen so that
$q>0$ on \tilde{I}. Hence by (3.3), $\int_{\tilde{I}}\left|p / q-r_{0}\right| d x=\lim _{k \rightarrow \infty} \int_{\tilde{I}}\left|r_{k}-r_{0}\right| d x=0$ and $p / q=r_{0}$. By $\left(\partial p_{0}-n\right)\left(\partial q_{0}-m\right)=0$ and Lemma 2 of [1, p. 165] we have $p=p_{0}$ and $q=q_{0}$ (assume $\left\|p_{0}\right\|+\left\|q_{0}\right\|=1$). Thus $q>0$ and $q_{k} \geqslant \beta_{1}>0$ on $[0,1]$ for sufficiently large k. Let $\beta_{2}=\inf \left\{\int_{l_{m}}\left|\tilde{p}+\tilde{q} r_{0}\right| d x: \tilde{p} \in P_{n}, \tilde{q} \in P_{m}\right.$, $\left.\left\|\check{p}+\check{q} r_{0}\right\|=1\right\}$. Then $\beta_{2}>0$ and for sufficiently large k

$$
\begin{aligned}
\alpha\left(r_{k}\right)\left\|_{i} r_{k}-r_{0}\right\|_{i} & \leqslant \int_{l_{m i}}\left|r_{k}-r_{0}\right| d x \\
& =\int_{l_{m i n}}\left|p_{k}-q_{k} r_{0}\right| /\left|q_{k}\right| d x \geqslant \int_{I_{m i n}}\left|p_{k}-q_{k} r_{0}\right| d x \\
& \geqslant \beta_{2}\left\|p_{k}-q_{k} r_{0}\right\| \geqslant \beta_{1} \beta_{2}| | r_{k}-r_{0} \| \\
& \geqslant \beta_{1} \beta_{2} \| r_{k}-r_{0}|i| .
\end{aligned}
$$

Since $\left\|r_{k}-r_{0}\right\| \neq 0$ the above equality contradicts the assumption that $\alpha\left(r_{k}\right) \rightarrow 0$. This contradiction completes the proof of the theorem.

4. Contincity

For $f \in C[0,1]$, let $T f \in R_{m}^{n}$ be the best approximation to f provided that one exists. The continuity of the operator T can be stated as follows:

Theorem 4.1. Assume that the irreducible rational function $r_{0}=p_{0} / q_{0}$ is the best approximation to f_{0} from R_{m}^{n} and $\left(\hat{c} p_{0}-n\right)\left(\hat{c} q_{0}-m\right)=0$. Then for every $\varepsilon>0$, there is a real $\delta>0$ such that every f in $C[0,1]$ with $\left\|f-f_{0}\right\|<\delta$ has a best approximation from R_{m}^{n} and $\left\|T f-T f_{0}\right\|<\varepsilon$.

Proof. First we show that for every $\varepsilon>0$, there exists a real $\delta_{1}>0$ such that $\left\|T f-T f_{0}\right\|<\varepsilon$ whenever $\left\|f-f_{0}\right\|<\delta_{1}$ and f has a best approximation Tf. Suppose to the contrary that for some $\varepsilon>0$ there exists a sequence $\left\{f_{k}\right\}$ in $C[0,1]$ such that $\left\|f_{k}-f\right\| \rightarrow 0$ as $k \rightarrow \infty, T f_{k}$ exists for all k, and $\left\|T f_{k}-T f_{\mathrm{o}}\right\| \geqslant \varepsilon$. Let $T f_{k}=p_{k} / q_{k}$. Without loss of generality we assume that $\left\|p_{0}\right\|+\left\|q_{0}\right\|=\left\|p_{k}\right\|+\left\|q_{k}\right\|=1$. By passing to subsequence, if necessary, assume that $p_{k} \rightarrow p, q_{k} \rightarrow q,\left\|f_{k}-T f_{k}\right\| \rightarrow c$ as $k \rightarrow \infty$, and $\partial p_{k}=\hat{c} p$, $\partial q_{k}=\partial q$ for every k. Since $q \geqslant 0$ on $[0,1], q$ can be decomposed as $q(x)=\left(x-z_{1}\right)^{4} \cdots\left(x-z_{v}\right)^{s_{s}} \tilde{q}(x)$, where $z_{j} \in[0,1]$ for $j=1, \ldots, r$, and $\tilde{q}(x) \neq 0$ on $[0,1]$. For concreteness, assume $\tilde{q}>0$ on $[0,1]$. Using the method in the proof of Theorem 1.3, one can show that p must have the form $p(x)=\left(x-z_{1}\right)^{s_{i}} \cdots\left(x-z_{v}\right)^{s_{v}} \ddot{p}(x)$.

We consider the following two cases:
(i) $c \geqslant\left\|f-r_{0}\right\|$. By Theorem 2.3 for $k=1,2, \ldots$, there are
$s=\max \{\partial p+m, \partial q+n\}+2$ open intervals $I_{1}^{(k)}<\cdots<I_{s}^{(k)}$ and $e_{k}=1$ or -1 , fixed, such that for $i=1,2, \ldots, s$,

$$
\begin{equation*}
(-1)^{i} e_{k}\left(f_{k}-T f_{k}\right) \geqslant 0 \quad \text { on } I_{i}^{(k)} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{i} e_{k} \int_{r_{i}^{(k)}}\left(f_{k}-T f_{k}\right) d x \geqslant\| \| f_{k}-r_{k}\| \| \tag{4.2}
\end{equation*}
$$

Write $I_{i}^{(k)}=\left(a_{i}^{(k)}, b_{i}^{(k)}\right)$ for $i=1, \ldots, s$. By passing to subsequences, if necessary, assume that $a_{i}^{(k)} \rightarrow a_{i}, b_{i}^{(k)} \rightarrow b_{i}$ as $k \rightarrow \infty$ for each $i=1, \ldots, s$, and $e_{k}=e$ for all k, where $e=1$ or -1 , fixed. Thus $a_{1}<b_{1} \leqslant a_{2}<\cdots \leqslant a_{s}<b_{s}$.

It is shown that if $q>0$ on $\left[a_{i}, b_{i}\right]$ for some i with $1 \leqslant i \leqslant s$, then there is a real $x_{i} \in\left(a_{i}, b_{i}\right)$ such that

$$
\begin{equation*}
(-1)^{i} e\left(\tilde{p}-\tilde{q} r_{0}\right)\left(x_{i}\right) \leqslant 0 \tag{4.3}
\end{equation*}
$$

Suppose to the contrary that $(-1)^{i} e\left(\tilde{p}-\tilde{q} r_{0}\right)>0$ on $\left(a_{i}, b_{i}\right)$ and $q>0$ on $\left[a_{i}, b_{i}\right]$. Then $T f_{k} \rightarrow \tilde{p} / \tilde{q}$, uniformly, on $\left[a_{i}, b_{i}\right]$. Letting $k \rightarrow \infty$ in (4.1) and (4.2), one has that $(-1)^{i} e\left(f-r_{0}\right)=(-1)^{i} e(f-\tilde{p} / \tilde{q})+(-1)^{i} e\left(\tilde{p} / \tilde{q}-r_{0}\right)>0$ on $\left(a_{i}, b_{i}\right)$ and

$$
\begin{aligned}
\left\|f-r_{0}\right\| & \geqslant\left.(-1)^{i} e\right|_{a_{i}} ^{h_{i}}\left(f-r_{0}\right) d x \\
& \geqslant c+(-1)^{i} e \int_{a_{r}}^{b_{i}}\left(\tilde{p} / \tilde{q}-r_{0}\right) d x>c
\end{aligned}
$$

which is a contradiction.
Now set $M:=\{0, s\} \cup\left\{i: 1 \leqslant i \leqslant s,\left[a_{i}, b_{i}\right] \cap\left\{z_{1}, \ldots, z_{v}\right\}=\varnothing\right\} \equiv$ $\left\{i_{1}<\cdots<i_{5}\right\}, \tilde{M}:=\left\{t: 1 \leqslant t \leqslant \tilde{s}, i_{t+1}-i_{t}\right.$ is odd $\}$, and $Z(a, b)=\sum_{a \leqslant=-}$ $\leqslant b s_{j}$ with $0 \leqslant a<b \leqslant 1$. Since z_{j} intersects at most two intervals in $\left\{\left[a_{i}, b_{i}\right]: i=1,2, \ldots, s\right\}$ and s_{j} is even provided $z_{j} \in(0,1)$ for each $j=1,2, \ldots, v$, it follows that for $t=1, \ldots, \tilde{s}-1$,

$$
Z\left(b_{i}, a_{i_{t-1}}\right) \geqslant \begin{cases}i_{t+1}-i_{t} & \text { if } i_{t+1}-i_{t} \text { is even } \\ i_{t+1}-i_{t}-1 & \text { if } i_{t+1}-i_{t} \text { is odd }\end{cases}
$$

Therefore $s \leqslant Z\left(b_{1}, a_{s}\right)+\operatorname{card}(\tilde{M}) \leqslant Z(0,1)+\operatorname{card}(\tilde{M})$. By the definition of \tilde{M} and (4.3), $q_{0} \tilde{p} / \tilde{q}-p_{0}$ has at least $s-Z(0,1)$ weak sign changes in $[0,1]$ [5, Definition 13-1]. By Lemma of [1, p. 162] and Assertion of [4, p. 61] we have $p_{0}=q_{0} \tilde{p} / \tilde{q}$. Since $\left(\hat{c} p_{0}-n\right)\left(\partial q_{0}-m\right)=0$, it follows that $p / q=\tilde{p} / \tilde{q}=p_{0} / q_{0}$ and $q=\tilde{q}>0$ on $[0,1]$. Thus $T f_{k} \rightarrow r_{0}$, uniformly, on $[0,1]$, which contradicts the assumption that $\left\|T f_{k}-r_{0}\right\| \geqslant \varepsilon$.
(ii) $c<\left\|, f-r_{0}\right\|_{\text {. By }}$. an analogous discussion on the alternating intervals of $f-r_{0}$, one can also obtain that $T f_{k} \rightarrow r_{0}$, uniformly, as $k \rightarrow x$. The same contradiction as that in (i) is obtained.

Next we show that there exists a real $\delta_{2}>0$ such that every f with $\left\|f-f_{0}\right\|<\delta_{2}$ has a best approximation.

Assume $\left\|p_{0} \mid+\right\| q_{0} \|=1$. Let $2 \varepsilon_{1}=\inf _{0}, q_{0}(x)>0$. We claim that there exists an $\varepsilon_{2}>0$ such that

$$
\left.\begin{array}{l}
|p|_{1}+\| q_{0} \mid=1 \\
r=p / q \in R_{m}^{n} \\
\mid r-r_{0} \|<\varepsilon_{2}
\end{array}\right\} \Rightarrow \mid q-q_{0} \|<\varepsilon_{1} .
$$

Otherwise there exists a sequence $\left\{r_{k}=p_{k}\left\{q_{k}\right\}\right.$ in $R_{m}^{\prime \prime}$, with $\mid p_{k}\|+\| q_{k} \|=1$, $\left\|q_{k}-q_{0}\right\| \geqslant c_{1}$ for each k, and $r_{k} \rightarrow r_{0}$ as $k \rightarrow x$. By passing to subsequences, if necessary, assume that $p_{k} \rightarrow p$ and $q_{k} \rightarrow q$ as $k \rightarrow \alpha$. Then $p=q r_{0}$ and by Lemma 2 of [1, p. 165], $p=p_{0}$ and $q=q_{0}$, a contradiction.

Now a real δ_{2} can be chosen so that for every f with $\left\|f^{\prime}-f_{0}^{\prime}\right\|_{i}<\delta_{2}$, its best approximation r (if it exists) satisfies that $\left\|r-r_{0}\right\|<\varepsilon_{2}$. Write $r=p / q$ with $\|p\|+\|q\|=1$. Thus $\left\|q-q_{0}\right\|<\varepsilon_{1}$ and $q(x)>\varepsilon_{1}$ on [0,1$]$. Therefore our search for r can be confined to the set

$$
G:=\left\{p / q: p / q \in R_{m}^{\prime}, q>\varepsilon_{1}\right\}
$$

It is elementary to show that G is compact and f has a best approximation from G (and thus from R_{m}^{n}).
$\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ is just what is needed in the theorem. The proof is completed.

If we consider the "continuity" of the operator T with respect to the measure $\left\|_{1} \cdot\right\|_{\text {: }}$ in the sense: given $f_{0} \in C[0,1], T$ is continuous at f_{0} if for every $\delta>0$ there exists $\delta>0$ such that $\left\|T f-T f_{0}\right\|<6$ whenever $\left\|f f-f_{0}^{\prime}\right\|<\delta$, we can obtain the following result.

Theorem 4.2. The operator T is "discontinuous" everwhere in $C[0.1]$ with respect to $\|\|\cdot\|\|$.

Proof. Assume that $f_{0} \in C[0,1]$ has a best approximation $T f_{0}$ from R_{m}^{n}. Write $T f_{0}=p_{0} / q_{0}$. By Theorem 2.3 there exist $s=\max \left\{\partial p_{0}+m\right.$, $\left\{q_{0}+n\right\}+2$ open intervals $I_{1}<\cdots<I_{s}$ such that for $i=1,2, \ldots, s$,

$$
\begin{gathered}
(-1)^{i} e\left(f_{0}-T f_{0}\right) \geqslant 0 \quad \text { on } I_{i} \\
(-1)^{i} e \int_{I_{i}}\left(f_{0}-T f_{0}\right) d x \geqslant\left\|^{i} f_{0}-T f_{0}\right\| .
\end{gathered}
$$

For $c>0$ sufficiently small we can choose s closed intervals $\tilde{I}_{1}<\cdots<I_{\text {. }}$ such that $(-1) e\left(f_{0}-T f_{0}-c / q_{0}\right) \geqslant 0$ on \tilde{I}_{i} and $f_{0}-T f_{0}-c / q_{0}=0$ at both endpoints of \tilde{I}_{i} for each $i=1,2, \ldots, s$. Let $\dot{c}=\inf \left\{\left\|f_{0}-T f_{10}-c / \mu_{0}\right\|_{i_{i}}\right.$: $1 \leqslant i \leqslant s\}$ and $\tilde{I}_{i}=\left[a_{i}, b_{i}\right]$. Now for every $\delta>0$, define a function in $C[0,1]$ such that for $i=1,2, \ldots, s$,

$$
\begin{gathered}
(-1)^{i} c\left(f-T f_{0}-c / q_{0}\right) \geqslant 0 \quad \text { on } \tilde{I}_{i}, \\
\left\|f-T f_{0}-c / q_{0}\right\|_{T_{i}}=\bar{c}, \\
\left(f-T f_{0}-c / q_{0}\right)\left(a_{i}\right)=\left(f-T f_{0}-c / q_{0}\right)\left(h_{i}\right)=0 .
\end{gathered}
$$

and $\left\|f-T f_{0}-c / q_{0}\right\|=\bar{c},\left\|f-f_{0}\right\|<\delta$. This function can be constructed directly (some oscillating function between f_{0} and $T f_{0}+c / q_{0}$ will meet the above requirements). Thus $\tilde{I}_{1}, \ldots, \tilde{I}_{s}$ are s alternating intervals of $f-T f_{0}-c / q_{0}$. Since $\max \left\{d\left(p_{0}+c\right)+m, \quad \partial q_{0}+n\right\}+2=s$, it follows that $T f=\left(p_{0}+c\right) / q_{0}$. However, $\left\|f-f_{0}\right\|<\delta$ and $\left\|T f-T f_{0}\right\|=c\left\|1 / q_{0}\right\|>0$. Hence the operator T is "discontinuous" at f_{0}. The proof is completed.

The "discontinuity" of best approximation from P_{n} with respect to li. \cdot !| can also be obtained as a special case of Theorem 4.2 with $m=0$.

Acknowledgments

We are gratcful to the referces for many helpful suggestions concerning the rewriting of our original version.

Reffrences

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. A. Pinkus and O. Shisha, Variations on the Chebyshev and $L^{\prime \prime}$ theories of best approximation, J. Approx. Theory 35 (1982). 148-168.
3. Zhiwel Ma, Some problems on a variation of L_{1} approximation, J. Approx. Theorr, in press.
4. J. R. Rick, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, MA. 1964.
5. J. R. Ricr., "The Approximation of Functions." Vol. 2, Addison Wesley. Reading. MA, 1969.

[^0]: * Supported by the National Natural Science Foundation of China.
 + Present address: Dept. of Statistics, Box 2179, Yale Station. Yale University, New Haven. CT 06520 .

