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NOTATION

For fe C[0, 1], the measure || || introduced by Pinkus and Shisha [2]
s

~h |
‘ ! a’_\“ “f(x)>0o0n (a4, h)or f(x)<0on (a, h)}.

A= sup {
i

W as b=

7

With this measure, Pinkus and Shisha have studied best approximation
from the set of algebraic polynomials of degree <n, and have established
some remarkable results. Set

Rl =\{piq:peP, qeP,, p/qisirreducible,
¢g>0on [0, 1]},

where P, denotes the set of all real algebraic polynomials of degree <n.
For fe C[0, 1], one can consider the following problem: find r, e R, such
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that (| f—roll =inf{ )/ —rl :re R . Any such r, is called a best
approximation to f from R” (with respect to [ - |).

In this paper we consider the basic questions of existence, characteriza-
tion, uniqueness, and continuity of best approximation, and get some inter-
esting results analogous to the well-known theorems for the Chebyshev

norm ||| (throughout this paper ||-|| denotes ||| , ).

. EXISTENCE
Using the method in the proof of Theorem 2.5 of [2], one can obtain:

LemMMA 1.1, Assume that for k=1,2,.,/1,€C[0, 1], p.eP, and
Nfelld is bounded. Then the sequence {|p.|} is bounded whenever
i fo—pall) is bounded.

We also need:

LEmMa 1.2, Assume that for k=12, .,r,eR], f,eCl0, 1], and
YL Y is bounded. If vl — + o0, then

lim = F el = ——
i WS = rll /el i

+

where s =max{m,n}.

Proof. Assume thatfork =1, 2, .., anopeninterval I, = (a,, b,)in [0, 1]
is such that for some ¢, =1 or —1, fixed, ¢,r,>0 on I, and ¢, [, r, dx=
el Let | £l <M for k=1, 2, ... Without loss of generality assume that
lirelil > (s +2)M for all k>0. Then ¢, M — r, has at most s zeros in [0, 1],
for otherwise r, =¢, M on [0, 1]. Hence

1 -
T ~'1L le, M —r,| dx.

mek M— rkm Tap i) 2

Assume that an open interval 7, = I, is chosen so that for some ¢, =1 or
—1, fixed,

éle,M—r)>0  onl, (1.1)

and

e [ (M —riydx=lleeM = rill (un, - (12)

T
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One must have ¢, = —¢,, for otherwise,

el = ey { rpdx < l le, M —r. | dx+ M

vy Yk

g(wl)&kj (e, M —r)dx+ M<(s+2}M.

1y

By virtue of (1.1) and (1.2) with é¢,= —¢,, we have —e(f, —ri)=
—M+er,=—e(egM—r.)>00n [, and

=iz —e | (oo dy

> —e, 17 (eeM—r)yde=lle,M—rlly o n
i

> [ leeM = r] dx/ts+ 1= (= MY+ 1),

o
Therefore lim, ., , I/ —relli/lirell = 1/(s + 1). The proof is completed.

Now we arc ready to answer the question of existence.

THEOREM 1.3, [If m< 1, then for every fe C[0, 1] there is at least one
best approximation to f from R,

nt

mi
such that || f—r.l| = E as k > + o0.

Set r, =pi/q, for k=1, 2, ... Without loss of generality assume ||¢,| = 1.
So llig. /—pll < E+ 1 for sufficiently large &, and {| p.]} is bounded by
Lemma 1.1. We can take a convergent subsequence of p, and one of ¢,
(again denoted by p,. ¢,), say p, = p and ¢, — ¢ as k - o. Since ¢ =0 on
[0, 1], g€ P, and m < 1, ¢ has at most one zero which is 0 or 1. It there-
fore follows that for every ¢ >0, p,/q, — p/q uniformly on [& | —¢].

Next we show that p(0) =0 when ¢(0)=0. Suppose to the contrary that
p(0) 0. Then there is a real ¢, 0 < ¢ < I, and an integer K> 0 such that for
some ¢=1 or —1, fixed, ep,(x)>0 on [0.c¢] for every k> K. Thus
ep(xX)/gi(x)>0 on [0,¢] and |ryli =e . pi/gs dx for k> K. Hence
kel b and {1 f—rill b are all not bounded by Lemma [.2. This is a con-
tradiction. In the same way we have p(1)=0 when ¢(1)=0. Therefore
whether or not ¢(x) has a zero in [0, 1], v, =p/g is well defined in R”,.

It remains to show that r, is a best approximation to /. Assumc that
(a, Y= [0, 17 1s such that for some e=1 or -1, fixed, e(/—ry)>0 on

Proof. Let E=inf{|| f—r|| :re R} There is a sequence {r,} in R
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(a.b) and e |2 (f—ry)dx=I f—ryll. Thus for every & with O<e<
(h—a)/2, onec has that e(f—r,)>0on [¢+¢ h—¢] and
b

¢ ‘ (f=ryde<!| f—r]
Yd+ e

for sufficiently large k. Letting A — % and ¢ — 0, one has that [{ f—r,| < E
and r, is a best approximation to /. The proof is completed.

For the remaining case. one has:

THEOREM 1.4, If m =2, then there exists a function {in C[0, 1] such
that { does not have a best approximation from R’

2

Proof. Define a function f(x) in [0, 1] such that

(n+2)2 for x=1/2n+4)
fxy=<L (-1 n+2)4 for v=2k+1)2an+4)k=1, . n+1
0 for x=i(n+2),i=0.1..,0+2,

and f(~x) is lincar in cach of the remaining intervals. Set, for
A=0.1,. 0+ 1 I, = (ki{n+2). (k+1)/(n+2)). Obviously (—1)* >0 on
[ for k=0,1...n+1, and

for k=0,

. 1
J— A ’ . v = 4
(=D Sy dy {; for k=12 ..n+1.

v,

We claim that ! f—r|| >¢ for every reR’. In fact if r=0. then
If=rll=3. If reR’ and r+#0, then there must be an interval I,
with 0<s<n+1 such that (~1)r<0 and r+#0 on [, Therefore
(=1 (f=rZ(=1)f>0o0n [ and || f=rli=(—1) |, (f=r)dx={.

Next we show that inf{ | f—r|| :re R} =1 Set

miy T 8
(x) A
P} =,
g hkS(x—1) +1
where r=1/(2n+4). Then for A=1.2, ..r,e R}, r,>0o0n [0, 1], and

+ o for x=1¢

1.3
0 for x#1. (1.3)

k

lim r,(x) —{

Hence in (0, 1/(n+2)) f—r, has four sign changes at the points
Iy <zIy<zy<zy with -, -0 and -, - 1/(n+2) as k— . Noting that

64062 2-9
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(f=rli—17k%) =

(f—r i+ 1/k*)y > (2n+3)/4>0 as k— x, we also
have -,e (t — 17k~ ¢

yand z;e (4, t + 1/k*) for sufficiently large k. Therefore

lﬁl [f—ridyv—0 as k-
<0

*’1:1 (f—r)dy= rl (f—r)dy < ‘, fdx= é

1

J AR
l (r;\. */) (l.\' < ' Fi (/.\- g 21\
v Yio kY

and [ /= relll 0., < ¢ for sufficiently large k. Since [§|r.| dx=o(1/k), it
follows from (1.3) that || f—r.ll m,,z%Jro(l/k). Hence | f—r. )| =
£+ o(1/k) and

inf!if—rl :reR:} =4.

The proof is completed.

2. ALTERNATION THEOREM

This section is devoted to the characterization of best approximants. We
need some basic definitions.

DeriniTION 2.1, For fe C[0, 1], an extremal interval of /in [0, 1] is an
open interval /< [0, 1], which for some ¢=1 or —1 (the signum of /)
satisfies:

(1) ef=0o0n/
(2) e, flx)dx= 1.

DermniTION 2.2, For fe C[0, 1], a maximal-definite interval of f in
[0, 1] is an extremal interval /= (a, f) of f, which for e = sign([/) satisfies:

(1) if Jis an open subinterval of (0, 1), /= J and ¢/=0 on J, then
f=0o0n J\I,

(i1) there is no open, nonempty subinterval of / having « or f§ as an
endpoint throughout which f=0.

As shown in [2], every fin C[0, 1] has finite maximal-definite intervals,
and they are all mutually disjoint.
Now we are ready to establish:

THEOREM 2.3. For fe C[0, 1], the irreducible rational function ro=p,iq,
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is a best approximation to f from R. if and only if f— r, has at least s alter-
nating extremal intervals in [0, 17]; ie., f —r, has at least s extremal intervals
I <I,< - <[, with

sign(/;) = —sign(/;, ) for i=1,2 .,5—1,
where s =max{0p,+m, 8qy+n} + 2 and 0p, denotes the degree of p,.

Proof. Assume that I, <I,< --- <[ are s alternating intervals of f— r,
and sign(/,) = —e. If there is r, = p,/q, in R" such that

m

IS =rill < lf—=roll, (2.1)
then for i=1, 2, ..., s, there exists x; e I, satisfying
(=1 e(ro—r)x;)<0. (2.2)

Otherwise if for some 7 with 1<i<s, (—1)e(ro—r,)>0 on I, then
(—De(f—r)>(=1)e(f~ry) =0 on I, and

If=rllZ(=1Ye | (f=ri)dx

| (f=roydx=[If=roll.

Y1,

>(—1)e

a contradiction. From (2.2) and the fact that { p+gr,:peP,, geP,} is a
(s — 1)-dimensional Chebyshev subspace (Lemma, [1, p. 162]), it follows
that g, ro—p, =0, 1e., r,=r,. This contradiction completes the sufficiency
of the theorem.

Assume that r, is a best approximation to f from R’ and all its maximal-
definite intervals are

A S
Im]+17 e Im;»
Im, IR A Im,,

where I, <[,  for 1<k<m,—1, and for e=1 or —1, fixed,
sign(l,)=(—1)e for m+1<i<m, |

with 0<j<t—1 and my;=0. We show that r>s. If this is not the case,
then for j=1,2, .., 1—1, a real x; can be chosen so that /,, <x,</, ,, and
(f—ro)x;)=0. By virtue of Lemma of [1, p.162] there are peP,, and
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ge P, such that for j=0,1, .. 1= 1L (=1}Ve(p+qgry)>0o0n (x, v, ) with
xo=0and x,= 1. Since (f— (p,+ 21p)ily,— 2¢)}x,)=0 for every >0, it
follows that

m

= pat ) gy — 2g)]
=max |||/ —(py+4p)ilgo— 2 o, 0 jse- 10 (2.3)
Noting that ¢, — ~¢ >0 on {0, 1] for sufficiently small £ > 0. we need only
show that for j=0,1. ... r— 1,
= pa+ Ap) g — Aq)| T < JEgi (2.4)

when 2 >0 becomes sufficiently small.

Suppose to the contrary that for some j with 0</j<r—- 1, {2.4) is not
true. For A=1,2.... there is £, >0 such that ¢, 4,¢>0. s, -0, and
1= o+ 2a P)(go =2l o, 2 1= roll. Then for A=1,2.... an
interval {a,. bh,) < [x,.x,, ] can be chosen so that for some ¢, =1 or —1.

SU(I (Dot 20 PYGy— 244 )) >0 on (a,.h,)

L’A | (ot 2 Py~ sggNdx =1 f -1y

Yy

By passing to subsequenu,s il necessary, we may assume that o, - «.
by —bas k- x.and ¢, =¢ for all k. Obviously (a, by [x,. x, | ]. Letting
k- x in (2.5). one obtains

of—ry)=0 on («, b)

il

¢ (f=roddxz1 f—=rall.

Hence (a, #) must intersect some maximal-definite interval with the signum
é. and (2.3) implies that e =(—1)’e. It follows by (2.5) that ( — 1)/ e(f—r,)
Z (= D'e(f=(po+2a PV go— 2xg) + (= 1) eldu(p+qro)lgo—2iq) > 0
on (a,,b,) and

by
If=roll =(—=1)e (f—ro)dx
rh . N .
>(‘1)/(’V (= (pot 4 P)(qo— 74q)) dx
z| f=rol

This contradiction completes the proof of the theorem.
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3. UNIQUENESS

Using the same method as that in the proof of the sufficiency of
Theorem 2.3, one can obtain:

THEOREM 3.1.  Each f in C[0, V] has at most one best approximation
from R

me

Furthermore a strong uniqueness theorem is presented.

THEOREM 3.2, Assume that the ireducible rational function ro=py/q, is
the best approximation to f from R’ and (Cp,—n)(éqy,—m)=0. Then there
Hn

exists a real ¢ >0 such that for every re R},
L=l = f = roll +clfr—rql. (3.1)

Proof. U r=vry,, (3.1) 1is trivial. Set, for reR! with r#r,.
a(ry=(lif = — [} f=roll)/|.r — rolt. It is sufficient to show that x(r) has a
positive infimum for all re R% with r#r,. Suppose not. Then for
k=1,2,.., there exists r,=p,/q, in R’ such that ||p,|+[lg,| =1 and
x2r ) >0 as k- o,

Since r,—roe Ry ", by Lemma 12 we have that {|lr,—roll} is
bounded. Thus || f—r.ll = I f—rel;. Without loss of generality we may
assume that p, - p and ¢, — ¢ uniiormly. By virtue of Theorem 2.3 there
exist m+n+2 open intervals Iy</I,--- </, .,,,in [0,1] and e=1 or
—1, fixed, such that for every i with 0<ig<n+m+1, (—1)e(f~ry,)=0
on I, and (—1)e |, (f—ro)dx= 1 f—roll. We claim that for every k one
can chose an integer j(k) with 0<j(k)<m+n+1 such that

e(— D" —ry) <0 on . (3.2)

If for some & this is not the case, then for each j=0, 1, .., m+n+ 1, there
exists a real x;e/; such that e(—1)' (r, —ry)(x;) > 0. Hence by Lemma of
[1, p. 1627 and Assertion of [4, p. 61] we have r, =ry, which contradicts
the choice of r,. Without loss of generality, assume j(k)=m for all k.
Therefore, by virtue of (3.2), one has

alri) hre —roll = [1Lf=rpll = 1 f—=roll
> (1) | (f=rddy—(=1)"e| (f—r)ds
I e
=e(—1)" | (ro—ry)dx= | Iri=rol dx. (3.3)
!, )

Since ¢ has at most m zeros, a closed interval 7=/ can be chosen so that

n
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¢>0 on I Hence by (3.3), {7|p/qg—ro| dx=1lim, ., [7[r,—r¢l dx=0 and
plq=ry. By (épy—n)(6g,—m)=0 and Lemma 2 of [1, p. 165] we have
p=p and g=gq, (assume | po| + ligo] =1). Thus ¢>0 and ¢, > f,>0 on
[0, 1] for sufficiently large k. Let 5, = inf{j,m |p+groldx:pelP,, GgeP,,
| p+gryl =1}. Then f,>0 and for sufficiently large k

a(rg) lire = roll < ) i = rol dx
Y

= l |Px—qxrol/lgl dx}v' |Pi—qirol dx

2P llpe—quroll Z B85 Ire —roll

=08, lilre —roll.

Since l|r, —roll 20 the above equality contradicts the assumption that
a(r,) — 0. This contradiction completes the proof of the theorem.

4. CONTINUITY
For fe C[0, 1], let Tfe R’ be the best approximation to f provided that
one exists. The continuity of the operator T can be stated as follows:

THEOREM 4.1.  Assume that the irreducible rational function ro=p,/q, is
the best approximation to f, from R’ and (Cp,—n)(égo—m)=0. Then for

every £ >0, there is a real 6 >0 such that every fin C[0, 1] with || f— f,|l <o
has a best approximation from R and | Tf — Tf,l <e.

Proof.  First we show that for every ¢ > 0, there exists a real ¢, >0 such
that | 7f — Tf,ll <& whenever || f—f,| <0, and f has a best approximation
Tf. Suppose to the contrary that for some ¢>0 there exists a sequence
{fiin C[0, 1] such that |[f, —f1| =0 as k - =, Tf, exists for all k£, and
ITf. — Tfyll = & Let Tf, = p./q.. Without loss of generality we assume that
Ipall + llgoll = lipcll + gl = 1. By passing to subsequence, if necessary,
assume that p,—p. qi—q, Wi~ Tfll > ¢ as k-, and Jp=7p,
(q,=7cq for every k. Since ¢ =0 on [0, 1], ¢ can be decomposed as
gxy=(x—z )" (x—z,)"g(x), where -,e[0,1] for j=1,.,v, and
G(x)#0 on [0, 1]. For concreteness, assume §>0 on [0, 1 ]. Using the
method in the proof of Theorem 1.3, one can show that p must have the
form p(x)=(x—z)" - (x—z,)" p(x).

We consider the following two cases:

(1) ez /f—roll. By Theorem23 for k=1,2,... there are
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s=max{0p+m,dq+n}+2 open intervals I'* < ... <I" and ¢, =1 or
—1, fixed, such that for i=1, 2, ..

(=D'eifi = T/)=0  on I} (4.1)

and

(—1 )i(’/\

U TRy A= L nl, (42)

i

Write 1% =(a",p'*") for i=1,..,s. By passing to subsequences, if
necessary, assume that a!> > a,, b'*' > b, as k > o foreach i=1, .., s, and
e, =e for all k, where e =1 or — 1, fixed. Thus ¢, <bh, <a, < --- <a,<b,.

It is shown that if ¢ >0 on [, b,] for some i with 1 <i<s, then there
is a real x,€ (a;, b;) such that

(—1)e(p—dre)x,) <O. (4.3)

Suppose to the contrary that (—1)'e{p—Gry) >0 on (a,, b;) and ¢>0 on
La;, b;]. Then Tf, — p/§, umformly, on [a,, b,]. Letting k — 20 in (4.1} and

(4.2), one has that (—1)'e(f—ro)=(—1)e(f—p/g)+(—1)e(p/G—ry)>0
n (a,, b,) and

b

I =roll = (—1)e | (f=rg)dx

Ya,

b,
>c'+(—1)’e‘ (P/G—ro) dx > ¢,
which is a contradiction.

Now set M := {0, s} u {i o I<igs, [anh]l n {2,z =) =
(i< - <ig), M:={1:1<1<3, i,,,—1i, is odd}, and Z(a,h)=3,.
«ns; With 0<a<b<1. Since z, intersects at most two intervals in
{[a,.h]:i=1,2,.,5} and s, is even provided z;€(0,1) for each
j=1,2,..,v, it follows that for t=1,..,§—1,

i, 1=, if i, —i iseven
20,5, )]

coi—i =1 if Q. —i,is odd.

Therefore s < Z(b,, a,) + card(M) < Z(0, 1)+ card(M). By the definition of
M and (4.3), gop/G — p, has at least s — Z(0, 1) weak sign changes in [0, 1]
[5, Definition 13-1]. By Lemma of [1, p. 162] and Assertion of [4, p. 61]
we have p,=g¢q,p/§. Since (ép,—n)(dg,—m)=0, it follows that
piq=p/G=po/q, and ¢=§>0 on [0, 1]. Thus Tf, —r,, uniformly, on
[0. 1], which contradicts the assumption that || Tf, —r,|| = &.
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(i) ¢<|if—ryll. By an analogous discussion on the alternating
intervals of /' r,, one can also obtain that Tf, — r,, uniformly, as k — ¥
The same contradiction as that in (i) is obtained.

Next we show that there exists a real d,>0 such that every / with
I/ = foll <05 has a best approximation.

Assume |[p, |+ lgol =1. Let 2¢, =inf, ., ¢o(x)>0. We claim that
there exists an ¢~ > 0 such that

[ pl + gl =1

"
m

r=p/ge R = ¢ —qol <&.

Ir—roll <&,

Otherwise there exists a sequence {r, =p./q,} in R? with [p. |+ gl =1.
lg. —qoll =€, for each k, and r, -7, as k— . By passing to sub-
sequences, if necessary, assume that p, - p and ¢, > ¢ as k - x. Then
p=gqr, and by Lemma 2 of [ [, p. 165], p=p, and ¢ =¢,, a contradiction.

Now a real o, can be chosen so that for every / with | f—f,|l <0,. its
best approximation r (if it exists) satisfies that ||r —r || <&.. Write r=p/q
with ||pll 4+ !¢l =1. Thus ilg — ¢4 <&, and g(x}>¢, on [0, 1]. Thereforc
our search for » can be conlined to the set

G:=\ply:plge R qg>¢ |
It 1s elementary to show that ¢ is compact and f has a best approximation
from ¢ (and thus from R,).

d=min{d,,d,} is just what is needed in the theorem. The proof is
completed.

If we consider the “continuity™ of the operator T with respect to the
measure ||| in the sense: given f,e C[0, 1], T is continuous at f, if for
every ¢>0 there exists 0>0 such that |[|7/—T/,ll <& whenever
Il /=1l <d. we can obtain the following result.

THEOREM 4.2.  The operator T is “discontinuous™ everywhere in C[0. 1]
with respect to || -||.

Write Tf,=p,/q,. By Theorem 2.3 there exist s=max{dp,+m,
Oqo+n} +2 open intervals [, < --- <[ such that for i=1,2, ... s,

Proof. Assume that f,€ C[0, 1] has a best approximation 77, from R’

(=D'e(fo—Tl) =0 on /;

(D' | Us=Th) dv=1 o~ T70ll.
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For ¢>0 sufﬁciently small we can choose s closed intervals 7, < --- <1,
such that (—1)e(f,— Tfy,—c/g0)=0 on I, and f,, — Tf, — ¢/g, =0 at both
endpoints of I, for cach i=1.2...s Let c=inf{|| 1, — T, — gl
1 <i<s) and Ti:[(l,,h,]. Now for cvery >0, define a function in
C[0, 1] such that for i=1,2, .., s,

(—Welf—Tfy—clge) 20  onl,
/= Tfo— c/qoll 7= 0C,
f T/(! ¢ ({( ((1 (f T/[‘ ¢/ ({() )_()

and [/~ Tfo—c/qoll =¢ Il f—foll <. This function can be constructed
directly (some oscillating function between f, and Tf,+ ¢/¢, will meet the
above requirements). Thus 7,...7 are s alternating intervals of
f—=Tfy—c/qy. Since max{d(py+c)+m, éqo+n}+2=s, it follows that
Tf=(po+c)/gy. However, | f—fuli <o and [ Tf— T/, =c|It/qq] >0.
Hence the operator T is “discontinuous™ at f,. The proof is completed.

The “discontinuity” of best approximation from P, with respect to |-/
can also be obtained as a special case of Theorem 4.2 with m = 0.

ACKNOWLEDGMENTS

We are grateful to the referces for many helpful suggestions concerning the rewriting of our
original version.

REFERENCES

1. E. W. CHeNEY, “Introduction to Approximation Theory,” McGraw-Hill, New York, 1966.

2. A. Pinkus aND O. SHisHA, Variations on the Chebyshev and LY theories of best
approximation, J. Approx. Theory 35 (1982). 148-168.

3. Zmiwel Ma, Some problems on a variation of L, approximation, J. Approx. Theory, in
press.

4. J. R. Rick. "The Approximation of Functions,” Vol. 1, Addison- Wesley, Reading, MA.
1964.

5. J. R. Rice, “The Approximation of Functions.” Vol. 2, Addison Wesley. Reading. MA,
1969.



